Convexity conditions of Kantorovich function and related semi-infinite linear matrix inequalities

نویسنده

  • Yun-Bin Zhao
چکیده

The Kantorovich function (xT Ax)(xT A−1x), where A is a positive definite matrix, is not convex in general. From a matrix or convex analysis point of view, it is interesting to address the question: When is this function convex? In this paper, we prove that the 2dimensional Kantorovich function is convex if and only if the condition number of its matrix is less than or equal to 3 + 2 √ 2. Thus the convexity of the function with two variables can be completely characterized by the condition number. The upper bound ‘3 + 2 √ 2’ is turned out to be a necessary condition for the convexity of the Kantorovich function in any finite-dimensional spaces. We also point out that when the condition number of the matrix (which can be any dimensional) is less than or equal to √ 5 + 2 √ 6, the Kantorovich function is convex. Furthermore, we prove that this general sufficient convexity condition can be improved to 2 + √ 3 in 3-dimensional space. Our analysis shows that the convexity of the function is closely related to some modern optimization topics such as the semi-infinite linear matrix inequality or ‘robust positive semi-definiteness’ of symmetric matrices. In fact, our main result for 3-dimensional cases has been proved by finding an explicit solution range to some semi-infinite linear matrix inequalities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...

متن کامل

On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints

In this paper, we consider a nonsmooth multiobjective semi-infinite programming problem with vanishing constraints (MOSIPVC). We introduce stationary conditions for the MOSIPVCs and establish the strong Karush-Kuhn-Tucker type sufficient optimality conditions for the MOSIPVC under generalized convexity assumptions.

متن کامل

Necessary Optimality and Duality for Multiobjective Semi-infinite Programming

The aim of this paper is to deal with a class of multiobjective semi-infinite programming problem. For such problem, several necessary optimality conditions are established and proved using the powerful tool of K − subdifferential and the generalized convexity namely generalized uniform ( , , , ) K F d α ρ − − convexity. We also formulate the Wolf type dual models for the semi-infinite programm...

متن کامل

A new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by ‎using semi-infinite linear programing

In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...

متن کامل

(m1,m2)-Convexity and Some New Hermite-Hadamard Type Inequalities

In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2011